
Micromobility

Micromobility refers to “a category of modes of transportation that includes very light,

low-occupancy vehicles such as electric scooters (e-scooters), electric skateboards,

shared bicycles, and electric pedal assisted bicycles (e-bikes)”. U.S. Department of

Transportation Bureau of Transportation Statistics.

e-Scooters

Issues such as space sharing and safety concerns have negatively influenced public

perceptions of e-scooters. Some common issues include:

• Parking

• Sidewalk riding

• Safety

• Inconsistent regulations

Autonomous Vehicles (AVs)

AVs rely on machine learning (ML) models to predict and understand their environment.

Recent advancements in ML allow AVs to perform well in predictable situations or on

known routes. However, limitations and lack of transparency in AV ML raise risks,

including:

• Domain shift (drift between the original context of the data and the application of the

model) and cybersecurity vulnerability

• Lack of information/misinformation among both consumers and car salespeople,

worsened by advertising terminology (e.g., “autopilot”)

• The transition between driver-in-control and the automation-in-control

• Adversarial attacks: Black-box attacks that function as a mirror of the original model

–reverse engineering the AV ML mode to create deceptive input that the model will

classify incorrectly
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This work discusses potential interactions and impacts between autonomous

vehicles and micromobility. While fully automated privately owned AVs are not yet

commercially available to the public, robotaxis, shuttles and delivery bots are

becoming increasingly common, especially in densely populated urban areas.

New types of micromobility devices, such as e-scooters are also being introduced

into the same areas. While extensive research and safety testing exist for both

domains, potential interactions between these two types of mobility in real world

environments requires consideration. By exploring the current state of both

technologies and early evidence currently available, we catalogue the potential

implications of their interactions, particularly with respect to communication,

expectations, infrastructure, risky behavior, and the impact of data limitations.

Concerns Concerns

Communication

• Even in a scenario with a highly automated vehicle able to detect vulnerable road

users (VRUs), the VRUs may have no way of knowing if they have been detected or

even realize they are interacting with an AV. Human drivers and VRUs often

communicate their intentions non-verbally, such as nodding or eye contact. Without

a way to replicate these cues, AVs must be designed to communicate their

intentions in other ways.

• Micromobility users must also be able to communicate their intentions to other road

users, which will include AVs. While hand signals common to cyclists exist, they may

be challenging for novice e-scooter riders to use. One solution for this issue involves

including using signaling mechanisms on micromobility devices so riders could

better communicate their intentions, however these have not been widely employed.

Recommendations

Introduction

Abstract
Current evidence suggests that AVs cannot detect VRUs as well as they can detect

other vehicles and cannot detect micromobility devices as well as they can detect

pedestrians. Researchers should continue to evaluate the needs of both nascent

technologies as they develop and interact, and the infrastructure needs for each

become clearer. Some recommendations include:

Infrastructure

• Historically, road networks have prioritized motor vehicles over VRUs.

Micromobility crashes often result from a lack of safe infrastructure (such as

connected bike lanes). This is especially important to micromobility users because

poor surface conditions put them at risk of destabilization.

• Potential solutions include creating street types specifically devoted to VRUs and

slow-moving automated vehicles; implementing AV toll lanes that would require

human-driven vehicles to pay, but not AVs, offering increased separation between

AVs and VRUs; and integrating “smart city” technologies to improve

communication between AVs and infrastructure.

Safety Data

• As there is no universal repository of crash data in either the domain, researchers

are left to acquire data piecemeal through medical and police reports. This means

that their work tends to be limited, incomplete, and relies non-standardized

methods.

• Potential solutions include developing data sharing partnerships that include

researchers, regulators, and developers and traceable data logging that is tied to

specific hazards. Methods for gaining and standardizing existing data should be

developed, and procedures for widespread reporting investigated.

Risky Human Behavior

• Prioritization of non-occupant safety could create tension between AV occupants

and non-occupants. While some have suggested VRUs should moderate their

behavior to behave more predictably, this has been met with criticism – as one

promise of AVs has been that they would increase safety, suggesting this can only

happen if human behavior also changes effectively limits the benefit of AVs.

• AV technology could give rise to poor behavior on both the part of micromobility

users (e.g., behaving unpredictably/failing to follow rules) and AV users (e.g.,

bypassing safety systems) that could interact and have disastrous consequences.

• Potential solutions could include investigating methods of increasing rule

compliance and studying previously observed misuse in both domains to

understand how those behaviors might interact.

Communication and Expectations

• It is not yet clear how AVs will communicate with others. Communication methods

that exist for interactions between VRUs and human drivers (e.g., eye contact and

body language), do not translate well into the AV domain.

• Potential solutions include exploring which methods of communication are most

effective between AVs and VRUs. These solutions should be easy to understand

by the full spectrum of VRUs (e.g., children, people with disabilities, and people

with language limitations) and should not put the burden on VRUs. It will be

important to continuously evaluate evolving expectations and update AV models

based on emerging behaviors.
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Prediction

What are they going to do?

Hybrid character and novelty of mode 

might make e-scooters particularly 

unpredictable

Where are they going

to do it?

Hybrid character of micromobility makes 

more locations possible

When are they going

to do it?

Same difficulties in predicting pedestrian 

behavior, but at a greater speed

Communication

How can humans 

communicate to AVs?

Even traditional forms of

micromobility like bicycles can fail

to make themselves understood

How can AVs communicate 

to humans? 

No clear substitute for

eye contact with driver

Expectations

How will prior experience 

affect trust?

Novel modes lack context

Emerging modes may evolve quickly 

and invalidate past experiences

Novel modes may be high variance, 

without time to evolve towards 

conformity

Will participants know and 

obey traffic laws?

Traffic laws regarding novel modes

are subject to change

Users of novel modes may be

non-compliant or unaware

What happens to 

bad actors?

AVs could avoid bad faith actions 

like road rage

Distributed responsibility in shared 

micromobility may lead to bystander

effect or sabotage

Prediction

• Human behavior can be difficult to predict, even for humans; models have also

struggled to accurately describe human behavior and often generalize poorly.

• E-scooter users often switch between travelling with traffic, against traffic, on the

sidewalk, in the crosswalk, and in the road. These kinds of novel behavior could be

particularly unexpected to AVs, which may incorrectly apply context clues like “is

standing” and “is travelling on sidewalk” to misclassify a micromobility user as

a pedestrian.

• Timing may also pose a challenge. While many models use datasets that focus on a

time-to-event horizon such as 1 second or 2.5 seconds, an e-scooter will be moving

at a very different speed. A pedestrian walking at 3 miles per hour is only

moving at 4.4 feet per second, covering about 11 feet in that 2.5 second

window; an e-scooter going 10 miles per hour is covering 15 feet per second

and would cover 38 feet in that same window. The difficulty of this geometry is

illustrated below. This not only makes the prediction task more difficult because of

the difference between the training data case and such a scenario, but it also means

the prediction must be done that much faster to avert a crash.

Expectations

• Interactions in the transportation system are largely dictated by expectations, formed

by prior experience and predefined routine actions.

• AVs of today are trained on data gathered from human-driven vehicles, rather than

other AVs. This means that the datasets are limited to containing information about

how other transportation users behave with human-driven vehicles – not how they

will behave with AVs – and that human response to AVs will vary considerably

between individuals.

• The higher the level of trust, the greater the potential for exploitation from bad

actors. A pedestrian who knows that an AV can and will always stop for them has

little incentive not to jaywalk, and VRUs have already reported engaging in exactly

such risky behavior.
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Typical Pedestrian

Search Range

Pedestrian

Range of

Movement

E-scooter
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Movement

4 ft/s 14.7 ft/s


